
Robust Euclidean Embedding

Lawrence Cayton lcayton@cs.ucsd.edu
Sanjoy Dasgupta dasgupta@cs.ucsd.edu

Department of Computer Science and Engineering, University of California, San Diego
9500 Gilman Dr. La Jolla, CA 92093

Abstract

We derive a robust Euclidean embedding pro-
cedure based on semidefinite programming
that may be used in place of the popular
classical multidimensional scaling (cMDS) al-
gorithm. We motivate this algorithm by ar-
guing that cMDS is not particularly robust
and has several other deficiencies. General-
purpose semidefinite programming solvers
are too memory intensive for medium to large
sized applications, so we also describe a fast
subgradient-based implementation of the ro-
bust algorithm. Additionally, since cMDS is
often used for dimensionality reduction, we
provide an in-depth look at reducing dimen-
sionality with embedding procedures. In par-
ticular, we show that it is NP-hard to find
optimal low-dimensional embeddings under a
variety of cost functions.

1. Introduction

In this paper, we work with the standard Euclidean
embedding problem: given a matrix D of interpoint
dissimilarities, find a configuration of points whose in-
terpoint Euclidean distances match the dissimilarities
closely. This problem and its relatives have been stud-
ied extensively in various research communities, in-
cluding psychology, operations research, and machine
learning. The major applications of Euclidean em-
bedding include visualization, dimensionality reduc-
tion, and adapting non-Euclidean dissimilarity mea-
sures (e.g. KL-divergence) to algorithms that require
vector data as input. Of course, the usefulness of an
embedding depends strongly on the fidelity of the em-
bedded distances to the input dissimilarities.

In the machine learning community, the algorithm of
Appearing in Proceedings of the 23 rd International Con-
ference on Machine Learning, Pittsburgh, PA, 2006. Copy-
right 2006 by the author(s)/owner(s).

choice for embedding seems to be classical multidimen-
sional scaling (cMDS). Its popularity results from be-
ing relatively fast, parameter-free, easy to implement,
and optimal for its cost function. In this work, we
look carefully at the algorithm and argue that cMDS
has some problematic features as well. In particular,
we argue that the cost function is not robust and is
conceptually awkward.

We propose a robust alternative to cMDS, robust Eu-
clidean embedding (REE), that retains many of the
desirable features of cMDS, but avoids some of its
pitfalls. We show that the global minimum of the
REE cost function can be found using a semidefi-
nite program (SDP). Though this is heartening, stan-
dard SDP-solvers can only manage the embedding pro-
gram for around 100 points. So that REE can be
used on more reasonably sized datasets, we present
a subgradient-based implementation of the algorithm.

Dimensionality reduction is an important application
of cMDS, though, as we will review, cMDS performs
dimensionality reduction by projecting the embedded
points on their principal components. We show that
the problem of reducing the dimensionality while pre-
serving distances as well as possible is NP-hard for a
variety of cost functions. We further show that a stan-
dard dimensionality reduction heuristic—minimizing
the trace—clashes with the cost function of REE,
meaning that, unfortunately, dimensionality reduction
cannot be performed as a part of the embedding.

1.1. Related Work

The Euclidean embedding problem has been exten-
sively researched, so let us pause to relate this paper
to previous work. The theoretical computer science
community has produced a large literature on embed-
dings; much of this literature traces back to (Linial
et al., 1995), where the use of semidefinite programs
for embedding was perhaps first discussed. Motivated
largely by geometric, combinatorial, and algorithmic
concerns, this body of work focuses on bounding the

Robust Euclidean Embedding

distortion of embeddings between various spaces (of-
ten finite metrics and normed spaces). In contrast,
this work is tailored to machine learning and is there-
fore focused on issues of data analysis such as cost
function selection, robustness, and efficiency. The op-
erations research and optimization communities have
also investigated the Euclidean embedding problem;
that line of work is described in detail in (Dattorro,
2005). The relationship of convexity and semidefinite
programming to Euclidean embedding has been ex-
plored in this body of work, but our perspective on
dimensionality reduction, our critique of cMDS, and
our subgradient algorithm have not been previously
developed. Finally, the psychometrics community has
been working with multidimensional scaling for over
half a century, but has mostly ignored issues of convex-
ity and algorithmic optimality; see (Borg & Groenen,
2005) for a recent overview.

1.2. Organization

The paper is organized as follows. We review and cri-
tique cMDS in section 2. In section 3, we analyze
several cost functions for embedding with an emphasis
on robustness. In section 4 we describe the robust em-
bedding procedure. Section 5 contains a discussion of
dimensionality reduction and NP-hardness and section
6 concludes the paper with several experiments.

1.3. Notation and Conventions

• Unless otherwise specified, we work only with
squared dissimilarities and distances.

• Dn = {D ∈ Rn×n|D> = D, diag(D) = 0} is the
set of (squared) dissimilarity matrices.

• EDMn is the set of n × n (squared) Euclidean
distance matrices.

• For a matrix M , ‖M‖1 =
∑

ij |Mij | and ‖M‖2
denotes the Frobenius norm.

• The distance matrix associated with a Gram ma-
trix B is denoted dist(B) and is defined as

[dist(B)]ij = Bii + Bjj −Bij −Bji.

2. Classical MDS

In this section, we briefly review classical MDS and
note a couple of its shortcomings. The algorithm ap-
pears in figure 1.

Let us consider cMDS as a 2-stage procedure: during
the first stage (steps 1-4), the dissimilarities are em-
bedded into Euclidean space; during the second, the
dimensionality is reduced by disregarding the tail-end
coordinates of X. Because the coordinate axes of X

cMDS
input: D ∈ Dn (dissimilarities), k ∈ {1, . . . , n}

1. Set B := − 1
2HDH, where H = I − 1

n11> is the
centering matrix.

2. Compute the spectral decomposition of B: B =
UΛU>.

3. Form Λ+ by setting [Λ+]ij := max{Λij , 0}.
4. Set X := UΛ1/2

+ .
5. Return [X]n×k.

Figure 1. Classical multidimensional scaling.

are aligned with the eigenvectors of XX>, the dimen-
sionality reduction stage is performing principal com-
ponents analysis. We focus on the embedding stage of
cMDS.

Classical MDS is based on a well-known characteriza-
tion of Euclidean distance matrices (EDMs):

D is an Euclidean distance matrix if, and
only if, B = − 1

2HDH is positive semidefi-
nite (PSD).

In such cases, this matrix B is the Gram (inner-
product) matrix for a configuration with interpoint
distances D. Given an EDM as input, cMDS converts
it to the corresponding Gram matrix B using the above
characterization (i.e. it sets B = − 1

2HDH) and then
decomposes it to get a configuration of points.

This reconstruction is perfect for EDMs, but what if
D is not Euclidean? Then the goal of cMDS is to
find an EDM D∗ that approximates it well. Finding
this D∗—i.e. projecting D onto EDMn—is the core
of the embedding problem; once it is found, we may
easily recover the corresponding configuration. Clas-
sical MDS performs this projection in a round-about
way: it takes B = − 1

2HDH, which will not be positive
semidefinite, and projects it onto the cone of positive
semidefinite matrices (step 4). In other words, rather
than directly projecting D onto EDMn, cMDS maps
D to a matrix of similarities, B, and projects it onto
the PSD cone. Figure 2 depicts this process.

The optimization problem being solved by cMDS is
minD∗∈EDMn ‖HDH −HD∗H‖22. We will discuss this
cost function in more detail in the next section.

There are a couple of shortcomings of cMDS that make
it unappealing for some machine learning tasks. First,
it is difficult to handle the case when some of the dis-
similarities are unavailable. Second, one cannot ex-
plicitly down-weight the error on some dissimilarities.

Robust Euclidean Embedding

Dissimilarity

D
∗

Similarity

B
∗ := UΛ+U

T

EDM

B := −

1

2
HDH

PSD

dist(B∗)
B

∗

B
D

Figure 2. The cMDS projection of D onto the EDM cone.

This functionality is useful in applications where some
dissimilarities are unimportant, or are very rough esti-
mates. For example, Isomap is an application of cMDS
in which the large distances are often crude estimates,
but the small distances are treated as accurate.

3. Cost Functions for Embedding

The cost function of classical MDS is

f(D∗) = ‖HDH −HD∗H‖22 (1)

with domain EDMn. In this section, we discuss this
cost function and several similar ones from a robust-
ness perspective. We also briefly remark on some con-
ceptual problems with the cMDS cost function.

3.1. Robustness

The robustness of a statistic concerns how well it can
tolerate a few noisy points (Huber, 1981). More pre-
cisely, suppose that the distribution of interest is P and
that there is a noise process modelled by Pe. Then, the
robustness of a statistic relates to how much it changes
relative to ε for a sample drawn from (1− ε)P + εPe.
Here, we mean robustness in a similar, though less for-
mal, spirit. We are interested in the effect of a small
number of noisy entries in the input on the resulting
configuration. That is, suppose that D is a Euclidean
distance matrix, but a few of its entries are corrupted
by a noise process. How does the embedding compare
to the true underlying configuration?

We take a first step towards robustness by simply
changing the norm of the cost function of cMDS (1).
The `2-norm is known to be sensitive to outliers; for
example, the poor robustness properties of the mean
are closely related to the behavior of the `2-norm. So,
we simply substitute the `1-norm for the `2-norm in

(1), yielding

f(D∗) = ‖HDH −HD∗H‖1. (2)

Even though the `1-norm is generally more robust than
the `2, this particular cost function is still quite sensi-
tive to noise. We now show that the HDH transfor-
mation is a second aspect of the cMDS cost function
that makes the procedure not robust. The terms of
HDH are

[HDH]ij = Dij − 1
n

∑

i

Dij − 1
n

∑

j

Dij +
1
n2

∑

ij

Dij .

Consider what happens if we take an EDM D and form
another matrix E which is identical to D except the
the dissimilarity between k and l is incremented by δ.
Though only two terms differ between D and E (the
kl-th term and the lk-th), all n2 terms between HDH
and HEH differ. In particular,

[HEH]ij − [HDH]ij =

δ(1− 1/n)2 if (i, j) = (k, l)
δ(1/n2 − 1/n) if i = k or j = l

δ(1/n2) otherwise.

To summarize, the kl-th and lk-th terms are modified
by Θ(δ), the terms in the k-th and l-th columns and
rows are modified by Θ(δ/n), and the rest of the terms
by Θ(δ/n2). The noise is spread throughout the ma-
trix, even though the only terms of B = − 1

2HDH that
bear on Dkl are Bkk, Bll, Bkl, and Blk. Put differently,
though the noise occurs only on a single dissimilarity,
it contaminates the entire matrix B at varying levels.

The result of this discussion is that we need to change
the cost function so that it does not use the HDH
transformation. The natural choice is

f(D∗) = ‖D −D∗‖1, (3)

which is the cost function that we work with for the re-
mainder of this paper. In section 4 we give an embed-
ding algorithm optimizing (3). We demonstrate the
described contamination effects in the experiments.

3.2. Other Cost Function Issues

Besides the issues just discussed, the 1
2HDH trans-

form is conceptually a bit curious. The transformation
makes sense when D is truly Euclidean, but is not ob-
viously principled for D 6∈ EDMn. For D 6∈ EDMn,
the cMDS cost function is awkward to interpret; it
suggests that − 1

2HDH is a noise-corrupted version of
the true Gram matrix B∗. Yet, the input to cMDS is
D, so it seems more natural to assume that D is noise

Robust Euclidean Embedding

corrupted—i.e. ‖D−D∗‖2 seems better grounded con-
ceptually. Moreover, though the set of mean-centered
Gram matrices and the set of EDMs are in one-to-one
correspondence,1 optimizing ‖HDH−HD∗H‖2 is not
equivalent to optimizing ‖D−D∗‖2 (Dattorro, 2005).

Future analysis notwithstanding, the cost function of
cMDS seems like it is essentially a convenient approx-
imation to ‖D − D∗‖2 that can be solved optimally
and relatively quickly. Because of numerous advances
in convex optimization since the invention of cMDS,
‖D −D∗‖p can now be solved optimally for some val-
ues of p; (Gaffke & Mathar, 1989; Glunt et al., 1990)
develop an interesting alternating projection algorithm
for p = 2. Here we show how ‖D−D∗‖1 can be mini-
mized using a semidefinite program.

4. Robust Euclidean Embedding

In this section, we show how to find an embedding
using the robust cost function developed in the last
section. Specifically, we show that the cost function
can be optimized using a semidefinite program (SDP).
Since general-purpose SDP solvers are unable to han-
dle datasets with more than a hundred points or so, we
also present a fast subgradient method for optimizing
the robust cost function. We refer to the embedding
algorithm developed for the robust metric as Robust
Euclidean Embedding (REE).

Again, the optimization problem to be solved by REE
is minD∗∈EDMn ‖D −D∗‖1. We generalize this slightly
to a weighted cost function:

min
D∗∈EDMn

∑

ij

Wij

∣∣Dij −D∗
ij

∣∣ . (4)

We now show that, like the cMDS cost function, we
can solve this one optimally.

4.1. Semidefinite Program Formulation

Semidefinite programs has proved useful in a number
of recent machine learning applications because of the
equivalence of Gram matrices and positive semidefinite
matrices. Here, we show that the robust optimization
problem (4) is easily formulated as a SDP. The pro-
gram follows.

minξ,B

∑
ij Wijξij

subject to: −ξij ≤ Dij − [dist(B)]ij ≤ ξij ∀i, j;∑
ij Bij = 0;

B º 0;
ξij ≥ 0 ∀i, j.

1The characterization of EDMs in terms of positive
semidefinite matrices, mentioned in section 2, gives the cor-
respondence.

In the program, W is a user-specified matrix of
weights, ξ is the error matrix, and B is the Gram ma-
trix. The term

∑
ij Bij = 0 is a regularization con-

straint that removes the degree of freedom caused by
the translation invariance of the problem. Once the
program is solved, the corresponding configuration of
points is X = UΛ1/2, where UΛU> is the spectral
decomposition of B.

There are a number of SDP-solvers available that can
solve the above program. Our experiments were con-
ducted using SDPT3 (Toh et al., 1999). However, gen-
eral purpose SDP-solvers are too memory intensive for
even modestly sized programs. We found that SDPT3
could only handle the REE program when n ≈ 100 or
less. To handle larger problem sizes, we implemented
a fast first-order method, as we now describe.

4.2. A Subgradient Algorithm

The program for robust embeddings has a non-
differentiable cost function and nonlinear constraints,
so we cannot hope to solve the program using a stan-
dard gradient descent procedure. With a subgradient
in place of a gradient, and a projection woven into each
iteration, however, we can solve the program.

A subgradient of a (potentially non-differentiable) con-
vex function f at x is any function g satisfying

f(y) ≥ f(x) + g(x)(y − x)

for all y. We can use a subgradient to minimize a con-
vex function much like gradients are used to optimize
differentiable functions.

Since our variable B is constrained to be positive
semidefinite, we must project it back into the positive
semidefinite cone with each update we make. The pro-
cedure is straightforward: we update the Gram matrix
by sliding along the subgradient, then project the up-
dated matrix back onto the positive semidefinite cone.
We repeat this process until the algorithm converges
to a good solution.

A subgradient for
∑

ij Wij |Dij − [dist(B)]ij | is

[G(B)]ij ={
WijI ([dist(B)]ij < Dij) if i 6= j;∑

k WikI([dist(B)]ik > Dik) if i = j.

(I denotes the indicator function returning 1 or −1.)

Subgradient methods require a step size parameter;
there are some standard choices for which convergence
to an optimal solution is guaranteed (Bertsekas, 1999).
We found that αi = c√

i
worked well in experiments.

Robust Euclidean Embedding

Robust Euclidean Embedding
(subgradient implementation)
input: D, W ∈ Rn×n

1. Set B0 ∈ Rn×n randomly.

2. for k = 1, 2, . . .

• Set B := Bk−1 − αkG(Bk−1).
• Spectrally decompose B: B = UΛU>.
• Set [Λ+]ij := max{Λij , 0}.
• Bk := UΛ+U>.

3. Pick k minimizing
(∑

ij Wij |Dij − dist(Bk)|
)
.

4. Return X := UΛ1/2, where UΛU> is the spectral
decomposition of Bk.

Figure 3. A subgradient algorithm for robust embedding.

The subgradient-based algorithm for robust embed-
ding is shown in figure 3.

4.3. Comparison with Classical MDS

The REE algorithm improves upon classical MDS in
several ways. First, it does not rely upon a conceptu-
ally awkward transformation that increases sensitivity
to noise. The use of the `1 metric in the cost func-
tion further bolsters the new algorithm’s robustness.
We show some simple experiments in section 6 that
illustrate the differences in robustness.

The robust embedding algorithm is also substan-
tially more flexible because it can handle non-uniform
weighting schemes on the cost function. If some Dij

is unavailable, we can set Dij to an arbitrary value
and set the weight Wij to zero. If some of the Dij are
cruder estimates than others, we can explicitly down
weight the error on those elements.

The cost of using REE is time complexity: each itera-
tion of the subgradient algorithm requires O(n3) com-
putations, whereas cMDS requires O(n3) total compu-
tations.

4.4. Speedups

Sampling techniques may be used to speed REE up
dramatically. In particular, we may use the Nyström
method to obtain a fast approximation to the ro-
bust embedding algorithm. The idea of the Nyström
method is to embed only a small submatrix of the
dissimilarity matrix using the robust embedding al-
gorithm, then embed the rest of the matrix using a
simple formula based on the eigenvalues of the Gram

matrix found by the embedding procedure. Details of
the Nyström method as applied to cMDS can be found
in (de Silva & Tenenbaum, 2004; Platt, 2005) and can
be easily adjusted for REE.

5. Dimensionality Reduction

Often, an embedding is used for visualization or an-
other application that requires the configuration to be
low-dimensional. We have ignored the issue of dimen-
sionality up until now; indeed the dimensionality of
the configuration found by the robust procedure is of-
ten quite high. In this section, we focus on finding an
optimal Euclidean embedding in k-dimensional space.

As we noted in section 2, classical MDS finds an em-
bedding and then reduces the dimensionality via prin-
cipal components analysis (PCA). Though we could
use PCA in conjunction with REE as well, it would be
preferable to take the desired dimensionality into ac-
count when performing the embedding. If we use PCA
after the embedding, the resulting configuration is not
guaranteed to be optimal for the REE cost function.

We show that one cannot hope to find a low-
dimensional embedding that optimizes the REE cost
function because it is a NP-hard problem. We gen-
eralize this hardness result to a wide variety of cost
functions, including ‖D−D∗‖2. We further show that
a popular rank reduction technique clashes with the
REE program.

5.1. Hardness of Low-Dimensional Embedding

Here is the problem we start with. Note that we work
with dissimilarities that are not squared in this section.

`1 Euclidean Embedding
Input: A dissimilarity matrix D = (dij).
Output: An embedding into the line: x1, x2, . . . ∈ R
Goal: Minimize

∑
i,j |dij − |xi − xj ||.

We show that this problem is NP-hard by reducing
from a variant of not-all-equal 3SAT. Other hardness
results (H̊astad et al., 1998; Saxe, 1979) apply only to a
`∞ distortion measure, that is, maxi,j |dij − |xi − xj ||,
which is not as appealing in statistical applications
because it places complete trust in every dissimilar-
ity coefficient. (Dhamdhere et al., 2004) investigates
embedding under average-case distortion, but uses a
different cost function than ours and only considers
non-contracting embeddings—i.e. embeddings whose
interpoint distances are at least as large as the input
dissimilarities. Though they demonstrate a hardness
result, their problem setup is substantially different
from ours.

Robust Euclidean Embedding

We reduce from the following problem.
Restricted NAE 3SAT
Input: A Boolean formula in 3CNF, such that each
clause has exactly three literals, and each pair of liter-
als appears together in at most one clause.
Question: Is there an assignment to the variables such
that each clause has either one or two satisfied literals?

Here is the reduction: we are given an instance

φ(x1, x2, . . . , xn) = C1 ∧ C2 ∧ · · · ∧ Cm

of Restricted NAE 3SAT. Assume without loss of
generality that no clause contains both a literal and
its negation. We will now construct an instance of `1
Euclidean Embedding, and show that there is some
C∗ = poly(n) such that

If φ is NAE-satisfiable, then there is an em-
bedding of cost ≤ C∗; otherwise the best em-
bedding has cost at least C∗ + 1/4.

The embedding problem has M+2n points: two points
per variable, called xi and xi, and M additional points
A1, . . . , AM (where M = 64n2(C∗ + 1/4)).

Define (symmetric) distances between them as follows:

• d(Ai, Aj) = 0 for all i, j
• d(Ai, xj) = d(Ai, xj) = 1/2 for all i, j
• d(xi, xi) = 1 for all i
• If two literals appear together in a clause, the dis-

tance between them is 1 (note: any pair of literals
appears together in at most one clause).

• All other interpoint distances are 3/4.

Claim 1. If φ is NAE-satisfiable, there is an embed-
ding with cost C∗ = n(n− 1)−m/4.

Proof: This can be seen by placing positive literals at
1/2 and negative literals at −1/2. ¤
Claim 2. If φ is not NAE-satisfiable, then any em-
bedding has cost at least C∗ + 1/4.

Proof: (Sketch: details are in the full version of the
paper.) Briefly, we assume without loss of generality
that in the embedding, the origin coincides with the
median of the Ai. If the embedding has cost less than
C∗+1/4, the following can be established in sequence:

1. All the Ai must lie within 1
32n2 of the origin;

2. Each xi must lie within 1
16n2 of 1/2 or −1/2;

3. There must be n literals near 1/2 and n near
−1/2, and neither of these two clusters can con-
tain both a literal and its negation.

The corresponding assignment then NAE-satisfies the
original formula. ¤

5.1.1. Other Cost Functions

The hardness result can be extended to distortion
functions of the form

∑
i,j g

(
f(dij)−f(|xi−xj |)

)
We

assume that f, g are

1. symmetric;
2. monotonically increasing in the absolute values of

their arguments;
3. Lipschitz on [0, 1] with constant λU , that is, for

x, y ∈ [0, 1], |f(x)− f(y)| ≤ λU |x− y|; and
4. similarly lower-bounded: for some λL > 0, for any

x, y ∈ [0, 1], |f(x)− f(y)| ≥ λL|x− y|max{x, y}.

Notice that f(x), g(x) ∈ {x, x2} satisfy these condi-
tions with λU = 2, λL = 1, meaning that ‖D − D∗‖1
and ‖D − D∗‖2 are both hard to minimize over one-
dimensional embeddings. The details of the reduction
are deferred to the full paper.

5.2. Trace Heuristic

Though the previous hardness result is new, it is well
known that rank constraints are not convex and hence
cannot be introduced into SDPs. A popular and often
effective heuristic is to append a weighted trace term
on to the cost function. The weighted trace function
is the convex envelope of the rank—i.e. it is the best
convex underestimate of the rank function, which is
why it may aid in rank reduction.

We replace the cost function defined previously with
min

∑
ij Wijξij + ρ · trace(B), where ρ is parameter

that is adjusted manually to achieve the desired rank
of B. When we experimented with the trace heuristic,
we observed the following curious behavior.

• When ρ ≤ n, the trace factor did not affect the
rank of B.

• When ρ > n, the SDP solver would return the
zero-rank trivial matrix B = 00>.

When ρ ≤ n, the trace term does not seem to be
weighted heavily enough to have a substantial effect
on the program. We analyze the dual to explain the
behavior of the SDP when ρ > n. The dual is

max
∑

ij DijSij

subject to: Sij ∈ [−1, +1] for i 6= j;
S1 = ρ1;
S º 0.

The objective of the solver is to find a weighting S of
the non-negative dissimilarities D subject to the con-
straints. If we were to remove the last two constraints

Robust Euclidean Embedding

cMDS

5 10 15 20

5

10

15

20

REE

5 10 15 20

5

10

15

20

Alternating projection

5 10 15 20

5

10

15

20

L1 MDS

5 10 15 20

5

10

15

20

Figure 4. The error residual matrices for embeddings found
by various algorithms. Darker shades indicate higher error.

(S1 = ρ1 and S º 0), we could trivially solve the
program by setting Sij = 1 for all i 6= j and Sii arbi-
trarily (the setting of Sii does not affect the cost func-
tion since Dii = 0). The behavior of the full program
whenever ρ ≥ n is essentially the same: the cost func-
tion is maximized by setting Sij = 1 for i 6= j, and,
with Sii set to ρ − (n − 1), the PSD constraint and
the row-sum constraints are satisfied. Note that this
setting depends on ρ ≥ n; otherwise, the S described
will not be PSD.

What does this analysis imply for the primal? Recall
that the primal has the constraint

−ξij ≤ Dij − [dist(B)]ij ≤ ξij . (5)

We need both inequalities so that
∑

ij ξij equals ‖D−
dist(B)‖1. Analysis of the dual variables reveals that
when Sij = 1 for all i 6= j, the Lagrange multipliers
that enforce the Dij− [dist(B)]ij ≤ ξij inequalities are
all equal to zero. This means that the only constraints
on ξij are Dij − [dist(B)]ij ≥ −ξij and ξij ≥ 0. We
can trivially minimize

∑
ij ξij under these constraints

(and the constraint that B º 0) by setting B = 00>

and ξ = 00>.

6. Experiments

6.1. Robustness Demonstration

In section 3, we argued that cMDS is not robust in the
sense that it propagates error in a single dissimilarity
to points throughout the embedding. To exhibit this
behavior, we took a D ∈ EDMn, corrupted only a cou-
ple of entries, and computed embeddings using cMDS
and REE. We also compare the `1 version of cMDS,

and the alternating projections algorithm (which min-
imizes ‖D −D∗‖2).
To generate D, we simply picked 20 random points
in R20, computed the interpoint Euclidean distances,
and added a large constant to two of the distances.
Figure 4 shows the error residuals of the embeddings
(with respect to the uncorrupted D). In the embed-
ding found by cMDS, the placement of the x10 and
x20 is incorrect with respect to all of the other points.
The embeddings found by `1 cMDS and alternating
projection exhibit a similar behavior; in addition, the
error has crept into a number of entries besides x10

and x20. REE, in contrast, has near-zero residuals for
almost all of the uncorrupted dissimilarities.

To confirm the behavior exhibited by this experiment,
we re-ran it 1000 times and calculated statistics. Each
time we generated a new random set of points, calcu-
lated the interpoint distances D, selected two entries
at random, and corrupted these entries by a random
constant in the range [0, ‖D‖2]. We then embedded the
corrupted distances using cMDS and REE. The statis-
tic of interest is the number of entries of D that were
distorted by the corruption-and-embedding process by
more than one percent. The following table shows the
mean and standard deviation of this statistic.

mean std. deviation
REE 12.0 3.4
cMDS 144.2 17.8

6.2. Visualization

Visualization is one of the primary uses of cMDS. Here,
we look at a standard MDS visualization example:
map reconstruction (Kruskal & Wish, 1978). The goal
is to draw a map based on the interpoint distances be-
tween 10 US cities. These distances are approximately
Euclidean, so cMDS finds a good embedding. We in-
troduce noise into the dissimilarities by doubling the
distance between Los Angeles and New York; the re-
mainder of the dissimilarities are untouched. We con-
sider the two-dimensional embedding found by cMDS
and the two-dimensional configuration found by first
embedding the dissimilarities using REE and then re-
ducing the dimensionality to two using PCA. Figure 5
shows the results. REE clearly outperforms cMDS.

6.3. Embedding the Shape Distance of Images

Here, we present an example using real data that is not
obviously better served by a robust algorithm. Embed-
ding provides a quick way to adapt algorithms that
take vectors as input to non-Euclidean dissimilarity
measures; here we embed such dissimilarities.

Robust Euclidean Embedding

Atl

Chi
Den

Hou
LA

Mia

NYC

SF

Sea

WDC

Atl

Chi
Den

Hou
LA

Mia

NYC

SF

Sea

WDC

Atl

Chi

Den

Hou
LA

Mia

NYC
SF

Sea

WDC

Embedding
of

original
data

REE −
corrupted

 data

cMDS −
corrupted

data

Figure 5. Map reconstruction.

The shape distance is a dissimilarity measure used to
compare images that has proved useful for classifica-
tion and retrieval (Belongie et al., 2002). In particular,
it has been successfully applied to the problem of clas-
sifying the MNIST handwritten digits with a nearest
neighbor algorithm.

We embedded the shape distance of 1000 handwrit-
ten digits (all 10 digits were included) taken from
the MNIST dataset using both cMDS and REE. We
then classified each embedded point according to its k
nearest Euclidean neighbors among the remaining 999
points. Figure 6.3 shows the graph of the number of er-
rors versus k for the cMDS and REE embeddings. The
nearest-neighbor classifier based on the REE embed-
ding substantially outperforms the cMDS-based clas-
sifier for each value of k, suggesting that REE embed-
ding represents the shape distance more faithfully than
the cMDS embedding. Note that neither embedding
is competitive with the nearest-neighbor algorithm on
the raw shape distances. However, our aim was merely
to compare the performance of REE and cMDS on a
real dataset using an agnostic evaluation criterion.

Acknowledgements

Thanks to Sameer Agarwal for help with computing
the shape distances and to the anonymous reviewers
for their suggestions.

References

Belongie, S., Malik, J., & Puzicha, J. (2002). Shape match-
ing and object recognition using shape contexts. IEEE
Pattern Anal. Mach. Intell., 24.

1 2 3 4 5 6 7 8 9 10
0

150

300

450

600

number of neighbors

m
is

ta
ke

s

MDS

REE

Raw shape distance

Figure 6. Nearest neighbor classification error.

Bertsekas, D. P. (1999). Nonlinear progamming. Athena
Scientific. 2nd edition.

Borg, I., & Groenen, P. (2005). Modern multidimensional
scaling. Springer. 2nd edition.

Dattorro, J. (2005). Convex optimization and euclidean
distance geometry. Meboo publishing.

de Silva, V., & Tenenbaum, J. (2004). Sparse multidimen-
sional scaling using landmark points. Manuscript.

Dhamdhere, K., Gupta, A., & Ravi, R. (2004). Approxima-
tion algorithms for minimizing average distortion. Proc.
21st STACS.

Gaffke, N., & Mathar, R. (1989). A cyclic projection algo-
rithm via duality. Metrika, 36, 29–54.

Glunt, W., Hayden, L., Hong, S., & Wells, J. (1990). An al-
ternating projection algorithm for computing the nearest
euclidean distance matrix. SIAM J. Matrix Anal. Appl.,
11, 589–600.

H̊astad, J., Ivansson, L., & Lagergren, J. (1998). Fittings
points on the real line and its application to rh mapping.
ESA (pp. 465–476).

Huber, P. (1981). Robust statistics. Wiley Interscience.

Kruskal, J., & Wish, M. (1978). Multidimensional scaling.
Sage Publications.

Linial, N., London, E., & Rabinovich, Y. (1995). The ge-
ometry of graphs and some of its algorithmic applica-
tions. Combinatorica, 15, 215–245.

Platt, J. (2005). Fastmap, metricmap, and landmark mds
are all nyström algorithms. Proc. 10th AISTATS.

Saxe, J. (1979). Embeddability of weighted graphs in k-
space is strongly np-hard. Proc. Allerton Conference on
Circuit and System theory.

Toh, K. C., Todd, M. J., & Tutuncu, R. (1999). SDPT3
— a Matlab software package for semidefinite program-
ming. Opt. Methods and Software, 11.

