
Fast Nearest Neighbor Retrieval for Bregman Divergences

Lawrence Cayton lcayton@cs.ucsd.edu

Department of Computer Science and Engineering, University of California, San Diego, CA 92093

Abstract

We present a data structure enabling efficient
nearest neighbor (NN) retrieval for bregman
divergences. The family of bregman diver-
gences includes many popular dissimilarity
measures including KL-divergence (relative
entropy), Mahalanobis distance, and Itakura-
Saito divergence. These divergences present
a challenge for efficient NN retrieval because
they are not, in general, metrics, for which
most NN data structures are designed. The
data structure introduced in this work shares
the same basic structure as the popular met-
ric ball tree, but employs convexity proper-
ties of bregman divergences in place of the tri-
angle inequality. Experiments demonstrate
speedups over brute-force search of up to sev-
eral orders of magnitude.

1. Introduction

Nearest neighbor (NN) search is a core primitive in
machine learning, vision, signal processing, and else-
where. Given a database X, a dissimilarity measure
d, and a query q, the goal is to find the x ∈ X mini-
mizing d(x, q). Brute-force search is often impractical
given the size and dimensionality of modern data sets,
so many data structures have been developed to accel-
erate NN retrieval.

Most retrieval data structures are for the `2 norm and,
more generally, metrics. Though many dissimilarity
measures are metrics, many are not. For example,
the natural notion of dissimilarity between probability
distributions is the KL-divergence (relative entropy),
which is not a metric. It has been used to compare
histograms in a wide variety of applications, includ-
ing text analysis, image classification, and content-
based image retrieval (Pereira et al., 1993; Puzicha

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

et al., 1999; Rasiwasia et al., 2007). Because the KL-
divergence does not satisfy the triangle inequality, very
little of the research on NN retrieval structures applies.

The KL-divergence belongs to a broad family of dis-
similarities called bregman divergences. Other exam-
ples include Mahalanobis distance, used e.g. in classi-
fication (Weinberger et al., 2006); the Itakura-Saito di-
vergence, used in sound processing (Gray et al., 1980);
and `22 distance. Bregman divergences present a chal-
lenge for fast NN retrieval since they need not be sym-
metric or satisfy the triangle inequality.

This paper introduces bregman ball trees (bbtrees), the
first NN retrieval data structure for general bregman
divergences. The data structure is a relative of the
popular metric ball tree (Omohundro, 1989; Uhlmann,
1991; Moore, 2000). Since this data structure is built
on the triangle inequality, the extension to bregman
divergences is non-trivial.

A bbtree defines a hierarchical space decomposition
based on bregman balls; retrieving a NN with the tree
requires computing bounds on the bregman divergence
from a query to these balls. We show that this diver-
gence can be computed exactly with a simple bisection
search that is very efficient. Since only bounds on the
divergence are needed, we can often stop the search
early using primal and dual function evaluations.

In the experiments, we show that the bbtree provides a
substantial speedup—often orders of magnitude—over
brute-force search.

2. Background

This section provides background on bregman diver-
gences and nearest neighbor search.

2.1. Bregman Divergences

First we briefly overview bregman divergences.

Definition 1 (Bregman, 1967). Let f be a strictly
convex differentiable function. 1 The bregman diver-

1Additional technical restrictions are typically put on

Fast Nearest Neighbor Retrieval for Bregman Divergences

}df (x, y)

f

xy

Figure 1. The bregman divergence between x and y.

gence based on f is

df (x, y) ≡ f(x)− f(y)− 〈∇f(y), x− y〉.

One can interpret the bregman divergence as the dis-
tance between a function and its first-order taylor ex-
pansion. In particular, df (x, y) is the difference be-
tween f(x) and the linear approximation of f(x) cen-
tered at y; see figure 1. Since f is convex, df (x, y) is
always nonnegative.

Some standard bregman divergences and their base
functions are listed in table 1.

A bregman divergence is typically used to assess sim-
ilarity between two objects, much like a metric. But
though metrics and bregman divergences are both used
for similarity assessment, they do not share the same
fundamental properties. Metrics satisfy three basic
properties: non-negativity: d(x, y) ≥ 0; symmetry:
d(x, y) = d(y, x); and, perhaps most importantly, the
triangle inequality: d(x, z) ≤ d(x, y) + d(y, z). Breg-
man divergences are nonnegative, however they do not
satisfy the triangle inequality (in general) and can be
asymmetric.

Bregman divergences do satisfy a variety of geometric
properties, a couple of which we will need later. The
bregman divergence df (x, y) is convex in x, but not
necessarily in y. Define the bregman ball of radius R
around µ as

B(µ,R) ≡ {x : df (x, µ) ≤ R}.
Since df (x, µ) is convex in x, B(µ,R) is a convex set.

Another interesting property concerns means. For a
set of points, the mean under a bregman divergence is
well defined and, interestingly, is independent of the
choice of divergence:

µX ≡ argminµ
∑
x∈X

df (x, µ) =
1
|X|

∑
x∈X

x.

This fact can be used to extend k-means to the family
of bregman divergences (Banerjee et al., 2005).

f . In particular, f is assumed to be Legendre.

Table 1. Some standard bregman divergences.

f(x) df (x, y)

`22
1
2
‖x‖22 1

2
‖x− y‖22

KL
P
xi log xi

P
xi log xi

yi

Mahalanobis 1
2
x>Qx 1

2
(x− y)>Q(x− y)

Itakura-Saito −
P

log xi

P“
xi
yi
− log xi

yi
− 1
”

2.2. NN Search

Because of the tremendous practical and theoreti-
cal importance of nearest neighbor search in machine
learning, computational geometry, databases, and else-
where, many retrieval schemes have been developed to
reduce the computational cost of finding NNs.

KD-trees (Friedman et al., 1977) are one of the earli-
est and most popular data structures for NN retrieval.
The data structure and accompanying search algo-
rithm provide a blueprint for a huge body of future
work (including the present one). The tree defines a
hierarchical space partition where each node defines an
axis-aligned rectangle. The search algorithm is a sim-
ple branch and bound exploration of the tree. Though
KD-trees are useful in many applications, their per-
formance has been widely observed to degrade badly
with the dimensionality of the database.

Metric ball trees (Omohundro, 1989; Uhlmann, 1991;
Yianilos, 1993; Moore, 2000) extend the basic method-
ology behind KD-trees to metric spaces by using met-
ric balls in place of rectangles. The search algorithm
uses the triangle inequality to prune out nodes. They
seem to scale with dimensionality better than KD-trees
(Moore, 2000), though high-dimensional data remains
very challenging. Some high-dimensional datasets are
intrinsically low-dimensional; various retrieval schemes
have been developed that scale with a notion of intrin-
sic dimensionality (Beygelzimer et al., 2006).

In many applications, an exact NN is not required;
something nearby is good enough. This is especially
true in machine learning applications, where there is
typically a lot of noise and uncertainty. Thus many
researchers have switched to the problem of approxi-
mate NN search. This relaxation led to some signifi-
cant breakthroughs, perhaps the most important be-
ing locality sensitive hashing (Datar et al., 2004). Spill
trees (Liu et al., 2004) are another data structure for
approximate NN search and have exhibited very strong
performance empirically.

Fast Nearest Neighbor Retrieval for Bregman Divergences

The present paper appears to be the first to describe
a general method for efficiently finding bregman NNs;
however, some related problems have been examined.
(Nielsen et al., 2007) explores the geometric properties
of bregman voronoi diagrams. Voronoi diagrams are
of course closely related to NN search, but do not lead
to an efficient NN data structure beyond dimension 2.
(Guha et al., 2007) contains results on sketching breg-
man (and other) divergences. Sketching is related to
dimensionality reduction, which is the basis for many
NN schemes.

We are aware of only one NN speedup scheme for KL-
divergences (Spellman & Vemuri, 2005). The results
in this paper are quite limited: experiments were con-
ducted on only one dataset and the speedup is less
than 3x. Moreover, there appears to be a significant
technical flaw in the derivation of their data structure.
In particular, they cite the pythagorean theorem as an
equality for projection onto an arbitrary convex set,
whereas it is actually an inequality.

3. Bregman Ball Trees

This section describes the bregman ball tree data
structure. The data structure and search algorithms
follow the same basic program used in KD-trees and
metric trees; in place of rectangular cells or metric
balls, the fundamental geometric object is a bregman
ball.

A bbtree defines a hierarchical space partition based
on bregman balls. The data structure is a binary tree
where each node i is associated with a subset of the
database Xi ⊂ X. Node i additionally defines a breg-
man ball B(µi, Ri) with center µi and radius Ri such
that Xi ⊂ B(µi, Ri). Interior (non-leaf) nodes of tree
have two child nodes l and r. The database points
belonging to node i are split between child l and r;
each point in Xi appears in exactly one of Xl or Xr.2

Though Xl and Xr are disjoint, the balls B(µl, Rl)
and B(µr, Rr) may overlap. The root node of the tree
encapsulates the entire database. Each leaf covers a
small fraction of the database; the set of all leaves
cover the entirety.

3.1. Searching

This subsection describes how to retrieve a query’s
nearest neighbor with a bbtree. Throughout, X =
{x1, . . . , xn} is the database, q is a query, and df (·, ·)
is a (fixed) bregman divergence. The point we are

2The disjointedness of the two point sets is not essential.

searching for is the left NN

xq ≡ argminx∈Xdf (x, q).

Finding the right NN (argminx∈Xdf (q, x)) is consid-
ered in section 5.

Branch and bound search locates xq in the bbtree.
First, the tree is descended; at each node, the search al-
gorithm chooses the child for which df (µ, q) is smallest
and ignores the sibling node (temporarily). Upon ar-
riving at a leaf node i, the algorithm calculates df (x, q)
for all x ∈ Xi. The closest point is the candidate NN;
call it xc. Now the algorithm must traverse back up
the tree and consider the previously ignored siblings.
An ignored sibling j must be explored if

df (xc, q) > min
x∈B(µj ,Rj)

d(x, q). (1)

The algorithm computes the right side of (1); we come
back that in a moment. If (1) holds, then node j and
all of its children can be ignored since the NN can-
not be found in that subtree. Otherwise, the subtree
rooted at j must be explored. This algorithm is easily
adjusted to return the k-nearest neighbors.

The algorithm hinges on the computation of (1)—the
bregman projection onto a bregman ball. In the `22 (or
arbitrary metric) case, the projection can be computed
analytically with the triangle inequality. Since general
bregman divergences do not satisfy this inequality, we
need a different way to compute—or at least bound—
the right side of (1). Computing this projection is the
main technical contribution of this paper, so we discuss
it separately in section 4.

3.2. Approximate Search

As we mentioned in section 2.2, many practical appli-
cations do not require an exact NN. This is especially
true in machine learning applications, where there is
typically a lot of noise and even the representation of
points used is heuristic (e.g. selecting an appropriate
kernel for an SVM often involves guesswork). This
flexibility is fortunate, since exact NN retrieval meth-
ods rarely work well on high-dimensional data.

Following (Liu et al., 2004), a simple way to speed up
the retrieval time of the bbtree is to simply stop af-
ter only a few leaves have been examined. This idea
originates from the empirical observation that metric
and KD-trees often locate a point very close to the NN
quickly, then spend most of the execution time back-
tracking. We show empirically that the quality of the
NN degrades gracefully as the number of leaves ex-
amined decreases. Even when the search procedure is
stopped very early, it returns a solution that is among
the nearest neighbors.

Fast Nearest Neighbor Retrieval for Bregman Divergences

3.3. Building

The performance of the search algorithm depends on
how many nodes can be pruned; the more, the better.
Intuitively, the balls of two siblings should be well-
separated and compact. If the balls are well-separated,
a query is likely to be much closer to one than the
other. If the balls are compact, then the distance from
a query to a ball will be a good approximation to the
distance from a query to the nearest point within the
ball. Thus at each level, we’d like to divide the points
into two well-separated sets, each of which is compact.
A natural way to do this is to use k-means, which has
already been extended to bregman divergences (Baner-
jee et al., 2005).

The build algorithm proceeds from top down. Start-
ing at the top, the algorithm runs k-means to partition
the points into two clusters. This process is repeated
recursively. The total build time is O(n log n). Clus-
tering from the bottom-up might yield better results,
but the O(n2 log n) build time is impractical for large
datasets.

4. Computing the Bound

Recall that the search procedure needs to determine if
the bound

df (xc, q) > min
x∈B(µ,R)

df (x, q) (2)

holds, where xc is the current candidate NN. We first
show that the right side can be computed to accu-
racy ε in only O(log 1

ε) steps with a simple bisection
search. Since we only actually need upper and lower
bounds on the quantity, we then present a procedure
that augments the bisection search with primal and
dual bounds so that it can stop early.

The right of (2) is a convex program:

min
x

df (x, q)

subject to: df (x, µ) ≤ R. (P)

The search algorithm will need to solve (P) many times
in the course of locating q’s NN, so we need to be able
to compute a solution very quickly.

Before considering the general case, let us pause to
examine the `22 case. In this case, we can compute the
projection xp analytically:

xp = θµ+ (1− θ)q,

where θ =
√

2R
‖q−µ‖ .

q

µ xp

What properties of this projection might extend to all
of bregman divergences?

1. First, xp lies on the line between q and µ; this
drastically reduces the search space from a D-
dimensional convex set to a one-dimensional line.

2. Second, xp lies on the boundary of B(µ,R)—i.e
df (xp, µ) = R. Combined with property 1, this
fact completely determines xp: it is the point
where the line between µ and q intersects the shell
of B(µ,R).

3. Finally, since the `22 ball is spherically symmetric,
we can compute this intersection analytically.

We prove that the first property is a special case of
a fact that holds for all bregman divergences. Addi-
tionally, the second property generalizes to bregman
divergences without change. The final property does
not go through, so we will not be able to find a solution
to (P) analytically.

Throughout, we use q′ ≡ ∇f(q), µ′ ≡ ∇f(µ), etc. to
simplify notation. xp denotes the optimal solution to
(P).

Claim 2. x′p lies on the line between q′ and µ′.

Proof. The lagrange dual function of (P) is

inf
x
df (x, q) + λ(df (x, µ)−R), (3)

where λ ≥ 0. Differentiating (3) with respect to x and
setting it equal to 0, we get

∇f(xp)−∇f(q) + λ∇f(xp)− λ∇f(µ) = 0.

We use the change of variable θ ≡ λ
1+λ and rearrange

to arrive at

∇f(xp) = θµ′ + (1− θ)q′,

where θ ∈ [0, 1).

Thus we see that property 1 of the `22 projection is a
special case of a relationship between the gradients;
it follows from claim 2 because ∇f(x) = x for the `22
divergence.

Fast Nearest Neighbor Retrieval for Bregman Divergences

Since f is strictly convex, the gradient mapping is one-
to-one. Moreover, the inverse mapping is given by the
gradient of the convex conjugate, defined as

f∗(y) ≡ sup
x
{〈x, y〉 − f(x)}. (4)

Symbolically:

x′x

∇f∗

∇f

Thus to solve (P), we can look for the optimal x′ along
θµ′+(1−θ)q′, and then apply ∇f∗ to recover xp.3 To
keep notation simple, we define

x′θ ≡ θµ′ + (1− θ)q′ and (5)
xθ ≡ ∇f∗(x′θ). (6)

Now onto the second property.
Claim 3. df (xp, µ) = R—i.e. the projection lies on
the boundary of B(µ,R).

The claim follows from complementary slackness ap-
plied to (3). Claims 2 and 3 imply that finding the
projection of q onto B(µ,R) is equivalent to

find θ

subject to: df (xθ, µ) = R

θ ∈ (0, 1]
xθ = ∇f∗(θµ′ + (1− θ)q′).

Fortunately, solving this program is simple.
Claim 4. df (xθ, µ) is monotonic in θ.

This claim follows from the convexity of f∗. Since
df (xθ, µ) is monotonic, we can efficiently search for θp
satisfying df (xθp

, µ) = R using bisection search on θ.
We summarize the result in the following theorem.
Theorem 5. Suppose ‖∇2f∗‖2 is bounded around x′p.
Then a point x satisfying

|df (x, q)− df (xp, q)| ≤ ε+O(ε2)

can be found in O(log 1/ε) iterations. Each iteration
requires one divergence evaluation and one gradient
evaluation.

4.1. Stopping Early

Recall that the point of all this analysis is to evaluate
whether

df (xc, q) > min
x∈B(µ,R)

df (x, q), (7)

3All of the base functions in table 1 have closed form
conjugates.

where xc is the current candidate NN. If (7) holds, the
node in question must be searched; otherwise it can
be pruned. We can evaluate the right side of (7) ex-
actly using the bisection method described previously,
but an exact solution is not needed. Suppose we have
bounds a and A satisfying

A ≥ min
x∈B(µ,R)

df (x, q) ≥ a.

If df (xc, q) < a, the node can be pruned; if df (xc, q) >
A, the node must be explored. We now describe upper
and lower bounds that are computed at each step of
the bisection search; the search proceeds until one of
the two stopping conditions is met.

A lower bound is given by weak duality. The lagrange
dual function is

L(θ) ≡ df (xθ, q) +
θ

1− θ
(
df (xθ, µ)−R

)
. (8)

By weak duality, for any θ ∈ [0, 1),

L(θ) ≤ min
x∈B(µ,R)

df (x, q). (9)

For the upper bound, we use the primal. At any θ
satisfying df (xθ, µ) ≤ R, we have

df (xθ, q) ≥ min
x∈B(µ,R)

df (x, q). (10)

Let us now put all of the pieces together. We wish to
evaluate whether (7) holds. The algorithm performs
bisection search on θ, attempting to locate the θ satis-
fying df (xθ, µ) = R. At step i the algorithm evaluates
θi on two functions. First, it checks the lower bound
bound given by the dual function L(θi) defined in (8).
If L(θi) > df (xc, q), then the node can be pruned.
Otherwise, if xθi ∈ B(µ,R), we can update the upper
bound. If df (xθi , q) < df (xc, q), then the node must
be searched. Otherwise, neither bound holds, so the
bisection search continues. See Algorithm 1 for pseu-
docode.

5. Left and Right NN

Since a bregman divergence can be asymmetric, it de-
fines two NN problems:

• (lNN) return argminx∈Xdf (x, q) and

• (rNN) return argminx∈Xdf (q, x).

The bbtree data structure finds the left NN . We show
that it can also be used to find the right NN.

Fast Nearest Neighbor Retrieval for Bregman Divergences

Algorithm 1 CanPrune
Input: θl, θr ∈ (0, 1], q, xc, µ ∈ RD, R ∈ R.
Set θ = θl+θr

2 .
Set xθ = ∇f∗(θµ′ + (1− θ)q′)
if L(θ) > df (xc, q) then

return Yes
else if xθ ∈ B(µ,R) and df (xθ, q) < df (xc, q) then

return No
else if df (xθ, µ) > R then

return CanPrune(θl, θ, q, xc, µ)
else if df (xθ, µ) < R then

return CanPrune(θ, θr, q, xc, µ)
end if

Recall that the convex conjugate of f is defined as
f∗(y) ≡ supx{〈x, y〉−f(x)}. The supremum is realized
at a point x satisfying ∇f(x) = y; thus

f∗(y′) = 〈y, y′〉 − f(y).

We use this identity to rewrite df (·, ·):
df (x, y) = f(x)− f(y)− 〈y′, x− y〉

= f(x) + f∗(y′)− 〈y′, x〉
= df∗(y′, x′).

This relationship provides a simple prescription for
adapting the bbtree to the rNN problem: build a bb-
tree for the divergence df∗ and the database X ′ ≡
{∇f(x1), . . . ,∇f(xn)}. On query q, q′ ≡ ∇f(q) is
computed and the bbtree finds x′ ∈ X ′ minimizing
df∗(x′, q′). The point x whose gradient is x′ is then
the rNN to q.

6. Experiments

We examine the performance benefit of using bbtrees
for approximate and exact NN search. All experiments
were conducted with a simple C implementation that
is available from the author’s website.

The results are for the KL-divergence. We chose to
evaluate the bbtree for the KL-divergence because it
is used widely in machine learning, text mining, and
computer vision; moreover, very little is known about
efficient NN retrieval for it. In contrast, there has
been a tremendous amount of work for speeding up
the `22 and Mahalanobis divergences—they both may
be handled by standard metric trees and many other
methods. Other bregman divergences appear much
less often in applications. Still, examining the prac-
tical performance of bbtrees for these other bregman
divergences is an interesting direction for future work.

We ran experiments on several challenging datasets.

• rcv-D. We used latent dirichlet allocation (LDA)
(Blei et al., 2003) to generate topic histograms for
500k documents in the rcv1 corpus (Lewis et al.,
2004). These histograms were generated by build-
ing a LDA model on a training set and then per-
forming inference on 500k documents to gener-
ate their posterior dirichlet parameters. Suitably
scaled, these parameters give a representation of
the documents in the topic simplex (Blei et al.,
2003). We generated data using this process for
D = 8, 16, . . . , 256 topics.

• Corel histograms. This dataset contains 60k
color histograms generated from the Corel image
dataset. Each histogram is 64-dimensional.

• Semantic space. This dataset is a 371-
dimensional representation of 5000 images from
the Corel Stock photo collection. Each image is
represented as a distribution over 371 description
keywords (Rasiwasia et al., 2007).

• SIFT signatures. This dataset contains 1111-
dimensional representations of 10k images from
the PASCAL 2007 dataset (Everingham et al.,
2007). Each point is a histogram of quantized
SIFT features as suggested in (Nowak et al.,
2006).

Notice that most of these datasets are fairly high-
dimensional.

We are mostly interested in approximate NN retrieval,
since that is likely sufficient for machine learning appli-
cations. If the bbtree is stopped early, it is not guar-
anteed to return an exact NN, so we need a way to
evaluate the quality of the point it returns. One nat-
ural evaluation metric is this: How many points from
the database are closer to the query than the returned
point? Call this value NC for “number closer”. If NC
is small compared to the size of the database, say 10
versus 100k, then it will likely share many properties
with the true NN (e.g. class label).4

The results are shown in figure 2. These are strong
results; it is shown that the bbtree is often orders
of magnitude faster than brute-force search without
a substantial degradation of quality. More analysis
appears in the caption.

4A different evaluation criteria is the approximation ra-
tio ε satisfying df (x, q) ≤ (1 + ε)df (xq, q), where xq is q’s
true NN. We did not use this measure because it is dif-
ficult to interpret. For example, suppose we find ε = .3
approximate NNs from two different databases A and B.
It could easily be the case that all points in A are 1.3-
approximate NNs, whereas only the exact NN in database
B is 1.3-approximate.

Fast Nearest Neighbor Retrieval for Bregman Divergences

−2 −1 0 1 2
0

1

2

3

4

5
rcv−8

−2 −1 0 1 2
0

1

2

3

4

5
rcv−16

−2 −1 0 1 2
0

1

2

3

4

5
rcv−32

−2 −1 0 1 2
0

1

2

3

4

5
rcv−64

−2 −1 0 1 2
0

1

2

3

4

5
rcv−128

−2 −1 0 1 2
0

1

2

3

4

5
rcv−256

−2 −1 0 1 2
0

1

2

3

4

5
SIFT signatures

−2 −1 0 1 2
0

1

2

3

4

5
Semantic space

−2 −1 0 1 2
0

1

2

3

4

5
Corel histograms

Figure 2. Log-log plots (base 10): y-axis is the exponent of the speedup over brute force search, x-axis is the
exponent of the number of database points closer to the query than the reported NN. The y-axis ranges from 100

(no speedup) to 105. The x-axis ranges from 10−2 to 102. All results are averages over queries not in the database.

Consider the plot for rcv-128 (center). At x = 100, the bbtree is returning one of the two nearest
neighbors (on average) out of 500k points at a 100x speedup over brute force search. At x = 101, the bbtree is
returning one of the eleven nearest neighbors (again, out of 500k points) and yields three orders of magnitude
speedup over brute force search.

The best results are achieved on the rcv-D datasets and the Corel histogram dataset. The improve-
ments are less pronounced for the SIFT signature and Semantic space data, which may be a result of both
the high dimensionality and small size of these two datasets. Even so, we are getting useful speedups on the
semantic space dataset (10-100x speedup with small error). For the SIFT signatures, we are getting a 10x
speedup while receiving NNs in the top 1%.

Fast Nearest Neighbor Retrieval for Bregman Divergences

Table 2. Exact search

dataset dimensionality speedup
rcv-8 8 64.5
rcv-16 16 36.7
rcv-32 32 21.9
rcv-64 64 12.0
corel histograms 64 2.4
rcv-128 128 5.3
rcv-256 256 3.3
semantic space 371 1.0
SIFT signatures 1111 0.9

Finally, we consider exact NN retrieval. It is well
known that finding a (guaranteed) exact NN in mod-
erate to high-dimensional databases is very challeng-
ing. In particular, metric trees, KD-trees, and relatives
typically afford a reasonable speedup in moderate di-
mensions, but the speedup diminishes with increasing
dimensionality (Moore, 2000; Liu et al., 2004). When
used for exact search, the bbtree reflects this basic pat-
tern. Table 2 shows the results. The bbtree provides
a substantial speedup on the moderate-dimensional
databases (up through D = 256), but no speedup on
the two databases of highest dimensionality.

7. Conclusion

In this paper, we introduced bregman ball trees and
demonstrated their efficacy in NN search. The exper-
iments demonstrated that bbtrees can speed up ap-
proximate NN retrieval for the KL-divergence by or-
ders of magnitude over brute force search. There are
many possible directions for future research. On the
practical side, which ideas behind the many variants of
metric trees might be useful for bbtrees? On the the-
oretical side, what is a good notion of intrinsic dimen-
sionality for bregman divergences and can a practical
data structure be designed around it?

Acknowledgements

Thanks to Serge Belongie, Sanjoy Dasgupta, Charles
Elkan, Carolina Galleguillos, Daniel Hsu, Nikhil Rasi-
wasia, and Lawrence Saul. Support was provided by
the NSF under grants IIS-0347646 and IIS-0713540.

References

Banerjee, A., Merugu, S., Dhillon, I. S., & Ghosh, J.
(2005). Clustering with bregman divergences. JMLR.

Beygelzimer, A., Kakade, S., & Langford, J. (2006). Cover
trees for nearest neighbor. ICML.

Blei, D., Ng, A., & Jordan, M. (2003). Latent dirichlet
allocation. JMLR.

Bregman, L. (1967). The relaxation method of finding
the common point of convex sets and its application to

the solution of problems in convex programming. USSR
Computational Mathematics and Mathematical Physics,
7, 200–217.

Datar, M., Immorlica, N., Indyk, P., & Mirrokni, V. S.
(2004). Locality-sensitive hashing scheme based on p-
stable distributions. SCG 2004.

Everingham, M., Gool, L. V., Williams, C. K., Winn, J.,
& Zisserman, A. (2007). The PASCAL Visual Object
Classes Challenge 2007 Results.

Friedman, J. H., Bentley, J. L., & Finkel, R. A. (1977). An
algorithm for finding best matches in logarithmic ex-
pected time. ACM Transactions on Mathematical Soft-
ware, 3(3), 209–226.

Gray, R. M., Buzo, A., Gray, A. H., & Matsuyama, Y.
(1980). Distortion measures for speech processing. IEEE
Transactions on Acoustics, Speech, and Signal Process-
ing.

Guha, S., Indyk, P., & McGregor, A. (2007). Sketching
information divergences. COLT.

Lewis, D. D., Yang, Y., Rose, T., & Li, F. (2004). Rcv1:
A new benchmark collection for text categorization re-
search. JMLR.

Liu, T., Moore, A. W., Gray, A., & Yang, K. (2004).
An investigation of practical approximate neighbor al-
gorithms. NIPS.

Moore, A. W. (2000). Using the triangle inequality to sur-
vive high-dimensional data. UAI.

Nielsen, F., Boissonnat, J.-D., & Nock, R. (2007). On
bregman voronoi diagrams. SODA (pp. 746–755).

Nowak, E., Jurie, F., & Triggs, B. (2006). Sampling strate-
gies for bag-of-features image classification. ECCV.

Omohundro, S. (1989). Five balltree construction algo-
rithms (Technical Report). ICSI.

Pereira, F., Tishby, N., & Lee, L. (1993). Distributional
clustering of English words. 31st Annual Meeting of the
ACL (pp. 183–190).

Puzicha, J., Buhmann, J., Rubner, Y., & Tomasi, C.
(1999). Empirical evaluation of dissimilarity measures
for color and texture. ICCV.

Rasiwasia, N., Moreno, P., & Vasconcelos, N. (2007).
Bridging the gap: query by semantic example. IEEE
Transactions on Multimedia.

Spellman, E., & Vemuri, B. (2005). Efficient shape index-
ing using an information theoretic representation. Inter-
national Conference on Image and Video Retrieval.

Uhlmann, J. K. (1991). Satisfying general proxim-
ity/similarity queries with metric trees. Information
Processing Letters, 40, 175–179.

Weinberger, K., Blitzer, J., & Saul, L. (2006). Distance
metric learning for large margin nearest neighbor classi-
fication. NIPS.

Yianilos, P. N. (1993). Data structures and algorithms for
nearest neighbor search in general metric spaces. SODA.

